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Introduction 
The problem of polarization of porous electrodes with relation 

to the resistance of the electrode material was solved first by Cole- 
man (1) in the case of cylindrical cathodes of Leclanch6 elements. In 
his differential equation, a supposition is implicitly included that 
the faradayic current, u, is directly proportional to the polarization 
of manganese dioxide particles, although he considered the “electromo- 
tive force of the manganese dioxide particle” as constant. Therefore, 
Coleman’s expression for the faradayic current as a function of the 
distance from electrode surface is substantially in accord with that 
of Euler and Nonnenmacher (2) who assumed a linear polarization curve 
of manganese dioxide electrode. Daniel-Bek (3) was the first to deduce 
fundamental differential equations in the form which is used nowadays. 
He gave the solution for two limiting cases, vie., that the faradayic 
current is @ exponential or  a linear function of  polarization. Final- 
ly, dewman and Tobias (4) solved the differential equations under the 
cJupposition that the faradwic current is an exponential function of 
polarization and their results are substantially in accord with those 
of Daniel-Bek. 

None of the mentioned authors’ solutions is valid f o r  the whole 
polarization region, but only f o r  limiting cases of either small or 
large overvoltage. However, it is possible t o  deduce a generally valid‘ 
aolut ion, ae follows . 

Mathematical solution 

For exactness, let us consider an electrode of rectangular shape 
with pores in form of linear channels parallel to one edge of the ele- 
ctrode, although it is possible to abandon any aseurnption concerning 
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the  geometry of the  pores ( 4 ) .  The x-axis runs p a r a l l e l  t o  the  pores,  
an the  e l e c t r o l y t e  s i d e  being x = 0. A meta l l ic  conductor a s  current  
co l lec tor  is placed on t h e  end o f  tine pores,  a t  x = L. For p o t e n t i a l ,  
yl, i n  t h e  electrode material, Ohm's l a w  holds: 

where pi is  the r e s i s t a n c e  o f  a cubic centimeter of the porous elec- 
t rode mater ia l  i n  the  d i r e c t i o n  of x-axis, and i, is  the e lec t ronic  
current  densi ty  corresponding t o  1 sq. cm. of the  electrode sec t ion  
perpendicular t o  the  x-axis. 

When the  electrode c o n s i s t s  of a depolar izer  and an excess sup- 
port ing e l e c t r o l y t e ,  and when t h e  concentration polar iza t ion  can be 
neglected with respec t  t o  the  a c t i v a t i o n  and resis tnnce polar iza t ion ,  
then an analogous equation holds f o r  the  p o t e n t i a l ,  y r ,  i n  the  e lec t -  
rolyte:  

/2/ 

where p1 is  the r e s i s t a n c e  of t h e  e l e c t r o l y t e  contained i n  one cubic 
centimeter of tne e lec t rode ,  and i, is the ion ic  current  density cor- 
responding again t o  1 sq. cm. of the electrode sect ion.  F ina l ly ,  ac- 
cording t o  Daniel-Bek ( 3 ) ,  we may write the following equation f o r  the  
density oi' faradayic c u r r e n t ,  D, on the  inner  pore surface: 

/3/ 

w i l e r e  S is ilia iiuiei- sui.face: u f  a cubic c~i~tii i ietei-  of  tiie e l e ~ t ~ ~ d ~ .  
Let us  choose f o r  3 t h e  fol lowing function of  po lar iza t ion  /overvolta- 
ge/, 5: 

D = 2i ,s inh 923, /4/ 

where 3 = 'pz - y1 f u l f i l l s  the  con<it ion t h a t  E = 0 when D = 0, io is 
the  exchange current  d e n s i t y ,  and = F/2RT; it is  possible ,  lionever, 
t o  s u b s t i t u t e  € o r b  an empir ical  value obtained by measure3ent OS po- 
l a r i z a t i o n  curves with a planar  electrode. For  anodic and cathodic DO- 
l a r i z a t i o n ,  tLe values  of  (3 can be  di f fe ren t .  Lheref'ore, it would be 
more cor rec t  t o  use t h e  w e l l  known general  r e l a t i o n  between curr*en.c and 
overvoltage f r o m  the theory o f  absolute  reac t ion  r a t e s ,  r a t h e r  than e- 
quation /4/. In t h a t  case ,  however, the inathesatical  so lu t ion  would be- 
cone too complicated, without y ie ld ing  any substantial .  improvement. 

The boundary con6i t ions f o r  equations /1/-/3/ are: 

x = 0: i, = 0 ,  !pl = 0 ,  /5/ 

' I  
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x = L: i, = I, /s/ 

and the  conservation l a w  of current: 

i, + i, = I. /7/ 

For a cathodic cur ren t  , I 7 0 ,  E 7 0,  and D 7 0; f o r  an anodic current  , 
I C  0, E < 0, and I) < 0. The problem defined by equations /1/-/7/ can 
be reduced t o  t h e  following d i f f e r e n t i a l  equation: 

L d'u. - dw 3 - -  d XL 

with boundary conditions:  

x = 0 :  

d u  
5 = L: aw = O y , L  

with u = (33, and h = l / i m  . 
The so lu t ion  of equations /8/-/10/ is: . 

/9/ 

/lo/ 

\x-x,\ = .kXF(A, \y ) ,  /w 

k =  1 ,  /12/ 

where F(k,y)  stands f o r  the e l l i p t i c  i n t e g r a l  of the first kind w i t h  
the modulus 

cosh Lum L 
and amplitude 

s inh  +urn, 
s inh  +u  

y = arCCoS /13/ 

Further x, is the value of x a t  which \ u \  has the  minilnun value \ urn\. 
Formally, the so lu t ion  /11/ is  analogous t o  t h a t  which 'ilinsel ( 5 )  de- 
rived f o r  the  case of r, = 0 .  

The expression f o r  faradayic current takes  the form: 

D =  ?* f i  
W Y  

y being defined by equation /11/ a s  

/14/ 

where s n  denotes Jacobi's e l l i p t i c  function. Further  D, s tands  f o r  
2i ,s inh u,, so that ID,\ represents  the minimum value o f  ID\. 
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An important.ueasurable quantity is the potential, (PdL , of the 
metallic conductor at the end of the pores /vs. the electrolyte poten- 
tial at x = O/. For  this we obtain: 

where E, and E, are the values of E f o r  x = 0 and x = L, which fulfill 
the following relationship: 

The value of E, can be computed from the equation 

1 /18/ 
I sinhtPE, = 

I, sin yo 
where I, = 2 / ( 3 h f L ,  and yo is the solution of the equation 

with yL = arctg[(y,/p,) tgyo] , and k = l/{l + IL/I~tgLy0 . 
, Some limiting cases 

When the pores are short so that L c 4.c k h  and the current is 
large, then k 44 1 and the expression f o r  faradayic current becomes: 

D = D-secLX - x+. 
k h  

/20/  

T" +l.<.. --"- &Le -----:-..LA-.- -n I>-- .... -A.Au beroc, ,.LAC ~ " ~ U L L U I L L U U  UL L I I ~  eiecirucie is iarge, so znaz zne 
Qyperbolic sine in equation /4/ m a y  be substituted by an exponential 
function. Equation /20/ can be shown to correspond exactly to the solu- 
tion given by Newman and Tobias ( 4 ) .  

SO that 1 I\ 4< Iosinh(L/2X) , equation /14/ becomes 
When, on the contrary, the pores are long and the current small, 

x-x* 
/21/ x - x  i k L  + (l-kL)coshLr 

h 
D = D-coah 

When, in addition, the polarization of the electrode is small, so that 
the hyperbolic sine in equation /4/ may be substituted by a linear 
function, we can set k = 1 in equation /21/ to obtain a simple formula 
which /after suitable rearrangement/ can be shown to correspond exac- 
tly to the solution given by Euler and Nonnenmacher ( 2 ) .  

When the specific resistances of both phases, electrode and elec- 
trolyte, are equal, then equation /l7/ yields s h p v  E ,  = E, , SO that 
the polarization at one end of the pores is equal to that at the other. 



Further xh= t L ,  t h a t  is, the minimum of the absolute value of pola- 
r i z a t i o n  is in  the middle of the electrode. Hence, tile faradayic cur- 
r en t  d i s t r i b u t i o n  i n  the electrode is symmetrical. Equation /16/ be- 
cones 

Y1' = -E, - * ILP, . /22/ 

Yhen the spec i f i c  res is tance of the electrode is  neg l ig ib l e ,  so 
t h a t  f,/fL 4 0, we have the case al l ready discussed by Yinsel ( 5 ) ;  
then cf,L = -E,,, x,= L. On the contrary,  when the  s p e c i f i c  r e s i s t ance  
of the electrode is very great ,  s o  that pl/pL + 00 , we have ylL = -ZL, 
x,,,,= 0. The r e s u l t s  o f  Ninsel ( 5 )  can be applied i n  t h i s  case,  if we 
introduce a new independent var iable  x'= L - x. In  o the r  words, we con- 
s i d e r  t he  end o f  the  pores as the  beginning and vice versa. 

An i n t e r e s t i n g  and very simple case is when t h e  s p e c i f i c  r e s i s -  
tances of  both phases a r e  equal and, simultaneously, the pores a r e  
long and for  the  current is small. Then we can express y,' simply a s  
a funct ion of the cu r ren t ,  I: 

I 
'pic = - 2 arsinh [- coth 2) - .$ IL?, , 

(3 1, 2h 
/2 3/ 

from whicn it can be seen t h a t  t h e  electrode po la r i za t ion ,  ( P I L ,  is di -  

r e c t l y  proportional t o  the t o t a l  current  when 1 I .% I,. Further ,  we 
can def ine the i n i t i a l  po la r i za t ion  r e s i s t ance  as 

The symmetrical form of  faradayic current  d i s t r i b u t i o n  can be r ead i ly  
seen from equation /21/, if we s e t  x,= L/2. 

Other cases a r e  more complicated and we have t o  compute the po- 
l a r i z a t i o n  curves, ( P , ~  = f(11, numerically f o r  a given s e t  of  parame- 
ters I,, L , h , ,  f, and P I .  T h i s  w i l l  be the purpose of f u r t h e r  work. 
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